Problem 7.47 i)

Determine the force associated with the potential
energy function U(r) = 4,

Potential energy functions and their associated force
fields have an interesting relationship to one another.
Specifically, the rate at which the potential energy
CHANGES at a point is proportional to the force at
that point. If you think about this conceptually, this

makes perfect sense. If a force is really big in a
region, you would expect an object in that region to change its kinetic energy
fast. That would suggest that in the region, a small change in position should
engender a big change in potential energy (remember, for a single force
system, W, = AKE = —AU).

Put a little differently, it kind of makes sense that if AU = —IF o d7, it is true that
dU(r)=-F e df. And if that is true, then:

_ du(r)
|F| - dr
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In an attempt to abbreviate this, a del operator is defined s \ Pl
o |1
§=[ii+ij+31§j \
Jx dy o0z \U=lA/ i
So the force can be written in its must succinct form as: Nl o
F=-VU \N__Im)

The only additional twist to all of this is if the potential function is given in polar-
spherical notation, like the problem we are trying to do. In that case

V= 2f+lié+Li(f>
or rod®  rsin6 do

(Yousa!) Fortunately, you won’t need to know this for the AP test, but you can
still use it here as:
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Jar r/ 00 rsing/ do
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Things only get slightly tricky when you note that you are

relating a scalar field (the potential energy field) to a \

vector field (the force field), and additionally that you

might have more than one dimension involved. That has \U
all been accommodated in a very clever way. If you were
to define the notation: NS,
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as “a derivative with respect to “x” holding all other variable constant (this is called
a partial derivative), times a unit vector in the x-direction,” then we could express
our multi-variable force vector as:

That is, the x, y and z components of the force would equal, respectively, the rate
of change of the potential energy function in the x-direction, times i, plus the
rate of change of the potential energy function in the y-direction, times j, etc.
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A couple of things to notice beyond the facts that minus

| |
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the slope of the potential energy function shown to the \\ ; ! !
right is, indeed, positive, and the force drops off as lrz . \ i i
rA/T==
Specifically, Newton’s general gravitational force (an \U ='A/ i
attraction between the bodies feeling the effect), expressed N Lo
in polar-spherical coordinates, is ——
Gmm, , . )
F= %(—r)
The negative sign in this case makes sense if - —@
you think about what it suggests. Look at the r | S

sketch to the right. With the radial unit vector

as defined, the attractive gravitational force on the blue body is in the —t, just as

the force function suggests. And if we derived the potential function for this force,

we would get: U Gm,m,
r

The point is that because this problems (i.e., Problem 7.47) has a given potential

energy function that is positive, and our derived force also positive, it can be

concluded that that force was REPULSIVE in nature.
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